2017

Premixed flame chemistry of a gasoline primary reference fuel surrogate

Premixed flame chemistry of a gasoline primary reference fuel surrogate

​H. Selim, S. Y. Mohamed, N. Hansen, S. M. Sarathy

Combustion and Flame, 179, 300-311, (2017)
H. Selim, S.Y. Mohamed, N. Hansen, S. M. Sarathy
Primary reference fuels, Flame chemistry, Fuel surrogates, Molecular beam mass spectrometry, Detailed reaction mechanisms
2017


Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

 
DOI: 10.1016/j.combustflame.2017.02.008