Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

by M. Al-Rashidi, A.C. Davis, S.M. Sarathy
Year:2015

Bibliography

Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods
M. Al-Rashidi, A.C. Davis, S.M. Sarathy
Proc. Combust. Inst., Issue 35, 385-392, (2015)

Abstract

​This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and Csingle bondC/Csingle bondO β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β Csingle bondC bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics.

Keywords

Dibutyl Ether Combustion Computational Kinetics Transition State Theory
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

Quick links

© King Abdullah University of Science and Technology. All rights reserved